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ABSTRACT

We present a one-dimensional model, which gives a novel physical interpretation to the specific state of an ensemble of electrons continu-
ously injected into an electrostatic potential well immersed in a strong applied magnetic field preventing radial expansion. When the space-
charge field of the electrons accumulated in the potential well compensates the external electrostatic field, a force-free steady-state of the
electron cloud forms. This state of equilibrium is known in another context as a squeezed state of an electron beam. It is shown that the spa-
tial distribution of the electron number density in this steady-state correlates with the shape of the potential well. Perturbations of the steady-
state propagate along the electron cloud in the form of Trivelpiece–Gould modes.
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I. INTRODUCTION

The term “squeezed state” of an electron beam was introduced in
Ref. 1. The authors of this article numerically and analytically studied
the injection of a magnetized electron beam into a conducting tube
consisting of two sections of increasing radii. This configuration is in
frequent use in experiments with virtual cathodes and microwave
oscillation sources, such as vircators (see, e.g., Ref. 2 and references
therein). It was shown that, under certain conditions, a virtual cathode
can be tailored to appear in the larger radius section, which then
moves toward the electron source placed in the smaller radius section,
leaving behind it a dense cloud of low-energy electrons in a specific
state, which the authors named a “squeezed beam.” This is a state
characterized by strong contraction of the electron phase space associ-
ated with the longitudinal degree of freedom.

A similar phenomenon, that is, strong contraction of the electron
phase space, was noticed in Ref. 3, where the electron injection in the
Malmberg–Penning trap4,5 was studied numerically and experimen-
tally. This contracted state, which the authors named “pure electron
plasma,” has similar characteristics to the squeezed beam state,
namely, low electron energies and equal, or almost equal, forward and
backward electron fluxes. Because of this, the term squeezed state is
more adequate than the squeezed beam and will be used below.

Recently, the squeezed state of the electrons attracted particular
interest in connection with its possible application in microwave elec-
tronics as a source of electrons instead of traditional cathodes.6–9 The
squeezed state of the electrons is created between two components of a

split cathode, that is, an emitter and a reflector connected by an axial
conductor.8 The electrons accumulated in the space between the emit-
ter and the reflector can be used as the electron source in a situation
where a magnetron anode block encircles the split cathode. For this
application, the electron source is only partially squeezed because of
the presence of other forces (radial and azimuthal), which cause elec-
trons to drift to the anode. There are other proposals to use the
squeezed electron state for microwave generation,10–12 gas ioniza-
tion,13 etc.

In this present article, we study the formation of the squeezed
state for electrons injected into a 1D electrostatic potential well
immersed in a strong applied magnetic field. This configuration is sim-
ilar to the Malmberg–Penning trap, which is used for the long-time
confinement of charged particles, electrons in particular. Despite this
similarity, there is an important qualitative distinction between the
properties of the ensembles of charged particles in the Malmberg–
Penning trap and in the squeezed state.

The formation of the equilibrium electron cloud in the
Malmberg–Penning trap can be considered as a two-step process.
First, electrons are injected through an “open” end of the potential
well into the trap. Then, the potential at this end is varied to the value
required for the electrons to be trapped in the well. The trapped elec-
trons form a closed (autonomous) dynamical system, which evolves to
thermodynamic equilibrium without interaction with the environment
(radiative cooling is not important at this stage). The equilibrium elec-
tron cloud forms in this second step. The parameters of this steady

Phys. Plasmas 28, 072106 (2021); doi: 10.1063/5.0056881 28, 072106-1

Published under an exclusive license by AIP Publishing

Physics of Plasmas ARTICLE scitation.org/journal/php



state are defined by integrals of motion (detailed description and refer-
ences one can find in Ref. 14).

The squeezed state is formed in a different way. Electron injection
is continuous; the environment (the electron source and the beam)
and the electron cloud inside the potential well exchange particles the
entire time. Thus, the squeezed state is an open system unlike the
closed Malmberg–Penning trap.

In this article, we propose a new theory for the formation of the
squeezed state, which allows for the determination of parameters, such
as the longitudinal distribution of the electron number density and the
accumulated charge. To be specific, we study the evolution of electrons
continuously injected into an open Malmberg–Penning trap, a situa-
tion allowing a rather simple and illustrative interpretation.

The remainder of this article is organized as follows. Section II
expands on the description of the squeezed state. Section III presents
the results of numerical simulations. Section IV describes the squeezed
state as a one-component plasma. The conclusions are presented in
Sec. V.

II. THE SQUEEZED STATE

Let us consider the configuration, formed by a conducting tube
of radius R and two electrodes placed on the axis and separated by a
distance L� R (Fig. 1). The electrodes are at negative potential (not
necessarily the same) relative to the potential of the tube. The electrons
are injected into the tube from the first electrode (left in Fig. 1) and
propagate along a longitudinal magnetic field, which is sufficiently
strong to prevent radial expansion. The negative potential of the sec-
ond electrode (right) reflects the electrons completely or partially
depending on its potential and radius. Any electron, which reaches
one of two electrodes, is absorbed. Thus, the injected electrons,
depending on their energy, either leave the system or are trapped in
both the radial and longitudinal direction, and form a negatively
charged column of space-charge between the electrodes. Electron
motion in the transverse direction can be described by azimuthal rota-
tion in the crossed axial magnetic field and radial electric field of the
electron space-charge. Longitudinal motion is defined by oscillation in
the potential well, uðzÞ, between electrodes. Note that the distribution
of the potential along the axis is similar to that in a split cathode.8,9

The presence of a radial electric field in the split cathode does not
affect the longitudinal electron motion when the applied axial mag-
netic field is sufficiently strong.

Let the radius rd of the electron cloud be small, rd � R, and
assume that the electron number density is homogeneous in the trans-
verse plane.14,15 Then, the radial dependence of the longitudinal com-
ponent of the electric field, Ez, which governs the axial motion of the
electrons, can be neglected and the problem reduces to the one-
dimensional electron motion.

Apart from the external electric field, the electron motion is
affected by the self-consistent Coulomb electric field of electrons’
space-charge. The presence of the conducting tube strongly modifies
the force between two charged particles. In contrast to free space, this
force decreases much faster than / d�2, where d is the distance
between particles. Radial homogeneity of the electron number density
allows one to consider the electron cloud as an ensemble of charged
disks of radius rd � R with a homogeneous surface-charge density r.
The condition rd � R guaranties that the force of the Coulomb inter-
action between these charged disks is distributed almost homoge-
neously across the disk’ surfaces and can be replaced by its integrated
value, and the disks can be considered as rigid. Azimuthal rotation in
the crossed radial electric and axial magnetic fields does not violate
this assumption.

Let us replace a dz-thick cylindrical slice of the electron cloud
placed at a distance z0 from the emitting electrode (left in Fig. 1) by a
charged disk with surface-charge density r0 ¼ enðz0Þdz, where nðz0Þ
is the electron number density. The longitudinal electric field Ez pro-
duced by this disk at some point (z, r), can be written as16

Ezðz;r;/Þ¼
4pr0rd

R

X
n

e��njz�z0j=Rsignðz�z0Þ
J0ð�nr=RÞJ1ð�nrd=RÞ

�nJ21 ð�nÞ
;

(1)

where J0;1 is Bessel functions of zero and first order, respectively, and
�n is the zeros of J0ð�nÞ ¼ 0. One can verify that the dependence of
the field Ez on radius r is very weak in the region r � rd � R near the
axis, so that it is possible to use an average over the disk surface value
of the field,17,18

Ezðz; rÞ ) �EzðzÞ ¼
2p
pr2d

ð
rdrdEzðz; rÞ;

�EzðzÞ ¼ 8pr0

X
n
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�2nJ

2
1 ð�nÞ

� 8pr0f ðjz � z0jÞsignðz � z0Þ:

(2)

Finally, one can write the longitudinal equation of motion of an elec-
tron in the presence of the external electric field EextðzÞ ¼ �@uðzÞ=@z
and the electric field of the space-charge as

d2z
dt2
¼ e

m
� @uðzÞ

@z
þ 8pe

ðL
0
dz0nðz0Þf ðjz � z0jÞsignðz � z0Þ

" #
; (3)

where z is the electron axial position and e> 0 is the elementary
charge attributed to electrons.

A typical dependence of the function f(x) on the normalized dis-
tance x ¼ jz � z0j=R is shown in Fig. 2. Figure 2 shows that the longi-
tudinal electric field of the space-charge decreases almost
exponentially with the distance from a charged slice (disk). Because

FIG. 1. Schematic drawing of the system. Two electrodes are placed inside a con-
ducting tube. The potentials of the electrodes are negatively relative to that of the
tube and are slightly different. The potential distribution along the axis of the tube is
shown schematically by the red line. A strong axial magnetic field restricts electron
transverse motion in the cloud.

Physics of Plasmas ARTICLE scitation.org/journal/php

Phys. Plasmas 28, 072106 (2021); doi: 10.1063/5.0056881 28, 072106-2

Published under an exclusive license by AIP Publishing



the effect being studied does not depend on the fine structure of the
force, we will use below the exponential approximation:

f ðxÞ ¼ a exp ð�kxÞ: (4)

For example, for rd=R ¼ 0:1; a ’ 0:25, and k ’ 13.
Introducing the dimensionless variables,

n ¼ z=R; s ¼ t
R

ffiffiffiffiffiffiffiffiffiffiffi
2eum

m

r
;

where um is the depth of the potential well and the equation of motion
Eq. (3) takes the following form:

d2n
ds2
¼ � 1

2
dU
dn
þ 4

R2

r2d

ðL
0
dn0 gðn0Þf ðjn� n0jÞsignðn� n0Þ: (5)

Here, U ¼ u=um and g ¼ ðper2d=umÞn are the normalized potential
and electron number density, respectively, andL ¼ L=R.

If the characteristic spatial scale k�1 of the Coulomb interaction
is small compared to the characteristic scale of the electron density
variation (which is the same as the spatial scale of the variation of the
potential U), and point n is placed far from the potential well edges,
the integral in Eq. (5) can be evaluated asð‘

0
dn0 gðn0Þf ðjn� n0jÞsignðn� n0Þ

’ �2a dgðnÞ
dn

ð1
0

dx x exp ð�kxÞ ¼ �2a dgðnÞ
dn

1

k2
: (6)

Now Eq. (5) can be written as

d2n
ds2
¼ � 1

2
dU
dn
� 8

R2

r2d

a

k2
dg
dn
: (7)

Equation (7) shows that there is a steady-state distribution of the elec-
tron number density gsqðnÞ whose space-charge electric field compen-
sates the external electric field completely,

gsqðnÞ ¼ g0 �
1
16

r2d
R2

k2

a
UðnÞ: (8)

Let Uð0Þ ¼ 0. Then, g0 ¼ gsqð0Þ. Equation (7) is not valid near the
edges of the potential well, and the integral at n ¼ 0 can be evaluated
in a different manner asð‘

0
dn0 gðn0Þf ðjn� n0jÞsignðn� n0Þjn¼0

’ �ag0
ð1
0

dn0 exp ð�kn0Þ ¼ �ag0
1
k
: (9)

Thus, at the steady-state,

� 1
2
dU
dn
jn¼0 � 4

R2

r2d

a
k

g0 ¼ 0; (10)

and

gsqðnÞ ¼
1
16

r2d
R2

k2

a
2
kU

k
� UðnÞ

� �
; (11)

where kU ¼ dU=dnjn¼0 � k. Expression (11) describes the electron
number density distribution of the squeezed state of the electron cloud
in a longitudinal potential well.

The squeezed state forms and develops in the following way. Let
the electrons be injected from the left electrode with some initial veloc-
ity into the longitudinal potential well bounded by the absorbing elec-
trodes (Fig. 1). A single electron, depending on its energy, can either
reach the absorbing boundary or be reflected into the space between
the electrodes. Note that the time-dependent longitudinal distribution
of the electron number density produces a time varying space-charge
electric field, so the total energy of the electrons is not conserved. If
many electrons are simultaneously present in the well, the self-
consistent space-charge field can modify their motion significantly.
Part of the electrons increases their energy, overcomes the potential
barrier near one of the electrodes, and gets absorbed. There are also
electrons whose energy decreases, and these are trapped in the poten-
tial well even if their initial energy exceeds the potential barrier.
Accelerated electrons leave the system, while the decelerated electrons
accumulate in the potential well. The accumulated electrons decrease
the depth of the effective potential well, ueff , which includes the contri-
bution of space-charge. Finally, the potential well becomes completely
filled with low-energy electrons, so that the effective potential
ueff ’ const and Eeff ’ 0, a situation that defines a squeezed state.

III. NUMERICAL SIMULATIONS

We solve here the equation of motion Eq. (5) in its discrete form
numerically. The energy of the injected electrons (macroparticles) is
chosen to be small relative to the potential well depth. The number of
injected electrons per unit time is kept constant, which corresponds to
saturated thermionic emission. When the number of electrons accu-
mulated in the potential well is sufficiently large, part of the injected
electrons returns back immediately after injection, so that the actual
emitted current becomes space-charge limited. The potential of the
right boundary of the potential well can be chosen to be either slightly
less than or greater than the initial energy of the injected electrons.

Let us assume that the energy of the injected electrons is chosen
to be small relative to both left and right potential barriers or even
equal to zero. At early times [Fig. 3(a)], electron trajectories in phase
space, ðn; u ¼ dn=dsÞ, are very near the single electron regular closed

FIG. 2. The function f(x), x ¼ jz � z0j=R at rd=R ¼ 0:1. Solid line—calculated using
Eq. (1); circles—approximation by one exponent, f ðxÞ ¼ a exp ð�kxÞ; asterisks—
approximation by two exponents, f ðxÞ ¼ a1 exp ð�k1xÞ þ a2 exp ð�k2xÞ.
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trajectory. At the right electrode, n ¼ 6, electrons are either absorbed
or returned toward the injection point. This behavior keeps on for
some time followed by the trajectories filling the phase space area
enclosed by the regular trajectory with the decrease in energy electrons
[Fig. 3(b)]. Much later, Figs. 3(c) and 3(d), the occupied phase space
shrinks along the normalized velocity u. Note the scale change in
Figs. 3(c) and 3(d) compared to Figs. 3(a) and 3(b).

As the number of electrons whose energy is large enough to
escape from the potential well decreases gradually, the velocity spread
du decreases [Fig. 3(c)] until the phase space area diminishes close to
the u¼ 0 line. Evolution of the phase space is characterized by the for-
mation of numerous vortex-type structures, similar to virtual cathodes,
during the electrons’ motion along the potential well, splitting and
merging.

At the initial stage of the potential well’s filling with injected elec-
trons, the number of particles in the well, NeðsÞ, and their total kinetic
energy,WeðsÞ, change irregularly. However, when the number of elec-
trons Ne approaches its maximal value, dependencies of the functions
NeðsÞ (the normalized number of electrons) and WeðsÞ (the normal-
ized total energy) on time change their character sharply (see Fig. 4).
At the same time, the electron phase space starts to shrink so it is sen-
sible to define this characteristic time, ss, marked in Fig. 4 as the begin-
ning of the squeezed state formation. For long times, the squeezed
state slowly approaches the steady-state value of the number of elec-
trons and the energy decreases, which is a “cooling” process of the
electron cloud. This behavior does not depend on the initial energy

and current of the injected electrons (within a certain range of values)
for s > ss. However, this is not so for s < ss. The value of ss depends
on the injection characteristics. ss is only several times larger than the
time sb for “ballistic filling,” and sb is equal to the ratio between the
maximum number of the electrons in the potential well and the

FIG. 3. The ðn; uÞ phase space at different normalized times s (shown at the left top corner of each frame) starting close to the beginning of the injection of electrons. s ¼ 5 in
(a), 50 in (b), 1000 in (c), and 2000 in (d) [note the reduced scale in (c) and (d) compared to (a) and (b)].

FIG. 4. The number of electrons (left vertical axis and blue curve) and their total
kinetic energy in the potential well (right vertical axis and red curve). Inserts show
the phase space evolution at various points in time. The number of particles is nor-
malized to their steady-state value. Time is normalized to the electron transit time
along the potential well. The energy is normalized to the potential well depth. The
beginning of the squeezed state formation, ss, is marked by the dashed vertical
line. The normalized velocity axis range in the phase space is [�1,1] for all inserts.
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number of injected electrons per unit time. For example, sb ’ 30 elec-
tron transit times for the system studied here, so that ss ’ 3sb.

When the number of trapped electrons is very near the saturation
level (see Fig. 3 and the insert at s ’ 1800 in Fig. 4), the electron num-
ber density distribution along the potential well is almost like the mir-
ror image of the external potential [see Fig. 4(a)], as predicted by
Eq. (11). The distribution of the resultant force along the potential well
is shown in Fig. 5(b).

Note that the maximal number of macroparticles present simul-
taneously in the potential well is �3� 103. This number is sufficient
for the correct numerical simulation of the squeezed state formation,
including the collective effect, such as space-charge waves (see
Sec. IV). Decreasing the “weight” of the macroparticles by a factor of
two or three, that is, increasing the number of macroparticles, did not
change the results.

There is an important difference between the electron number
density distribution along the potential well in the squeezed state and
in the electron column at a thermal-equilibrium in the
Malmberg–Penning trap. In the squeezed state, the electron density is
non-zero at the injection plane, while in the Malmberg–Penning trap,
the electron column is isolated from the boundaries and the electron
density is equal to zero at the boundaries. This is a manifestation of
the difference between open and closed systems.

The squeezed state can also form in the absence of the left elec-
trode in Fig. 1. For example, assume that a fixed energy electron beam
is injected from the left boundary and is reflected by the right electrode
whose potential exceeds the beam energy. This configuration is similar
to those considered in Refs. 3 and 19. If the beam current is sufficiently
large, a virtual cathode forms near the injection plane. This virtual
cathode can be considered as a virtual potential barrier near the left
boundary. A detailed consideration of such a system is beyond the
scope of this article, but preliminary studies, carried out in the frame-
work of the one-dimensional model presented above, demonstrate the
same phase space evolution as 3D PIC (Particle-in-Cell) simulations.19

Finally, let us estimate the characteristic electron number density
in the squeezed state. Assuming that the tube radius is R � 10 cm, the
electron column radius is rd � 1 cm, and the potential well depth um
is of the order of several tens of kV, one can calculate that the electron
number density is of the order of 1011–1012 cm�3. This electron den-
sity is several orders of magnitude larger than one accessible in the
Malmberg–Penning trap.

IV. THE SQUEEZED STATE AS A ONE-COMPONENT
PLASMA

The results of Sec. III confirm that the electric field of the space-
charge trapped electrons inside the potential well compensates almost
completely the external electric field. One can, instead, consider the
formation of the squeezed state as the result of the electric field of the
electron space-charge compensated by the external electric field. This
is exactly the situation occurring in a two-component quasi-neutral
plasma, when electrons and ions compensate their own space-charge
and form a force-free configuration with equal densities of the
particles. Thus, a squeezed state may be considered as a charged,
non-neutral electron plasma.

The electron cloud in the Malmberg–Penning trap was also
treated as a “plasma with a single sign of charge,”14,20,21 and this anal-
ogy was used when considering the radial equilibrium of the electron
cloud. In this context, the axial magnetic field plays the role of an ion
background compensating the electrons’ space-charge. Instead, we use
the terminology of a charged plasma by keeping in mind that the axial
equilibrium of the electron cloud provides its radial confinement. We
should note that some similarity between the squeezed state and
plasma was mentioned in Refs. 12 and 22.

The interpretation of the squeezed state as a quasi-neutral plasma
allows one to assume that some kind of plasma wave can propagate
along the electron column. Figure 4 shows that the squeezed state
relaxes to its steady state very slowly. Intense fluctuations of the elec-
tron density and the electric field are very slowly damped and remain
significant over a very long time, but these noise-like perturbations
make their observation difficult. However, it is possible to arrange the
electrons (macroparticles) along the potential well in such a way that
the relation between the electric potential and the electron number
density [Eq. (11)] distribution is fulfilled. This artificially prepared ini-
tial state relaxes rapidly to a steady-state with very low noise level.

For example, let us consider that the steady state is perturbed by
additional particles, which appear suddenly in a small region near the
center of the potential well as seen in Fig. 6. The uncompensated
space-charge field produced by these excess particles removes particles
from the potential well through the left and right absorbing bound-
aries, and the total number of particles in the squeezed state relaxes
rapidly to its equilibrium value. However, the electric field and electron
density perturbations remain in the system in the form of propagating
waves that are clearly visible in Fig. 6(b).

The evolution of small perturbations of the dimensionless steady-
state electron density ~g and electron velocity ~u is described by the
equation of motion and the continuity equation,

@~u
@s
¼ �8R

2

r2d

a

k2
@~g
@n
;

@~g
@s
þ gsqðnÞ

@~u
@n
¼ 0;

(12)FIG. 5. (a) The potential well (red) and the electron density distribution (blue) in the
squeezed state. (b) External (blue) and resultant force (red) inside the potential
well. The dimensionless time here is s ¼ 20 000.
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where gsqðnÞ is the equilibrium density distribution, defined by Eq. (11).
In the short wavelength approximation, Eq. (12) describe waves whose
phase velocity, csq, depends on the local unperturbed density,

c2sq ¼ 8
R2

r2d

a

k2
gsqðnÞ: (13)

At the center of the system, where the influence of boundaries is negli-
gibly small, so that UðnÞ ’ �1, the phase velocity is constant and it
follows from Eq. (11) that

c2sq ’ 1=2; (14)

which is confirmed by the results of numerical simulations shown in
Fig. 6(b). The dimensional phase velocity, vph, is proportional to the

maximum of the electron velocity ve ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2eum=m

p
in the potential

well, csq ¼ ve=
ffiffiffi
2
p

.
These waves in the squeezed state are nothing other than the

Trivelpiece–Gould modes of a magnetized plasma waveguide.23 The
maximum phase velocity of these modes, vph, is proportional to
the electron plasma frequency xpe / n1=2. In the squeezed state, the
electron density, n, is proportional to the electrostatic potential u.
Thus, vph / ve / u1=2 / n1=2 / xpe. It is not the surprising thing
that the electron beam, which does not overlap with the squeezed state
(a similar configuration with conventional plasma was proposed and
used in Ref. 24), can excite these modes.12

V. CONCLUSIONS

A squeezed state can develop when electrons are continuously
injected at one or both edges of a longitudinal potential well. The

properties of this state of an electron cloud are similar to that of an
one-dimensional quasi-neutral plasma where the external electrostatic
potential substitutes the role of the ions. Quasi-neutrality of an ordi-
nary, two-component plasma, is replaced by an equilibrium between
the confining external potential field and the repulsive Coulomb force
of the space-charge. It is important to note that our interpretation of
the equilibrium condition allows one to determine the maximum
number of charged particles, which can be accumulated in a given
potential trap.
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FIG. 6. (a) External potential well. (b) The electric field evolution. Note that the
wave phase velocity is constant in the central region, where U � const, and
decreases near the system edges, where the equilibrium density is minimal. The
dashed line corresponds to csq ¼ 1=

ffiffiffi
2
p
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