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Abstract

Introduction

Cold Atmospheric Plasma Jet (CAPJ), with ion temperature close to room temperature, has

tremendous potential in biomedical engineering, and can potentially offer a therapeutic

option that allows cancer cell elimination without damaging healthy tissue. We developed a

hand-held flexible device for the delivery of CAPJ to the treatment site, with a modified high-

frequency pulse generator operating at a RMS voltage of <1.2 kV and gas flow in the range

0.3–3 l/min. The aims of our study were to characterize the CAPJ emitted from the device,

and to evaluate its efficacy in elimination of cancer cells in-vitro and in-vivo.

Methods and Results

The power delivered by CAPJ was measured on a floating or grounded copper target. The

power did not drastically change over distances of 0–14 mm, and was not dependent on the

targets resistance. Temperature of CAPJ-treated target was 23˚-36˚ C, and was dependent

on the voltage applied. Spectroscopy indicated that excited OH- radicals were abundant both

on dry and wet targets, placed at different distances from the plasma gun. An in-vitro cell pro-

liferation assay demonstrated that CAPJ treatment of 60 seconds resulted in significant

reduction in proliferation of all cancer cell lines tested, and that CAPJ activated medium was

toxic to cancer cells. In-vivo, we treated cutaneous melanoma tumors in nude mice. Tumor

volume was significantly decreased in CAPJ-treated tumors relatively to controls, and high

dose per fraction was more effective than low dose per fraction treatment. Importantly, patho-

logic examination revealed that normal skin was not harmed by CAPJ treatment.

Conclusion

This preliminary study demonstrates the efficacy of flexible CAPJ delivery system against

melanoma progression both in-vitro and in-vivo. It is envisioned that adaptation of CAPJ
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technology for different kinds of neoplasms use may provide a new modality for the treat-

ment of solid tumors.

Introduction

Cold atmospheric plasma jet (CAPJ) has become extremely attractive for biological applica-

tions, due to its potential in disinfection, wound healing and cancer treatment [1]. This type

of plasma can be generated by different types of gas discharges, for instance by either induc-

tively or capacitively coupled RF discharges, corona discharge and dielectric barrier discharge

(DBD). DBD discharge is used in most plasma guns producing CAPJ. Namely, the plasma for-

mation occurs due to capacitive coupling between the high-voltage electrode and the plasma

generated by ionization of the gas flow at atmospheric pressure. This plasma can be considered

as a low-ionized, collisional non-thermal plasma with temperature of ions and neutrals of

~300 K. Several recent review papers [2,3] describe different geometries of the plasma guns

and power supplies used for CAPJ generation, and the parameters of the plasma measured by

different electrical, optical and spectroscopic diagnostics.

CAPJ can be generated using pulse power supplies operating at frequencies in the range

1–30 kHz in noble gas or noble gas mixture (as Ar + air [4], Ar + N2 [5,6], He [3,7,8]). The

application of these gases is related, following Paschen dependencies, to decreased breakdown

threshold allowing application of voltage pulses with amplitude�5 kV [9–13]. For instance,

Wang et al. [7] used HV pulses with amplitude of ~3.7 kV and variable duty cycle for generat-

ing DBD discharges in He gas with flow rate of 4.6 l/min. Graves[14] operated with DBD

discharges in noble gases with�1% admixture of N2 and/or O2 at flow rate of 3 l/min at fre-

quencies in the range 1–30 kHz and voltage amplitude down to ~1.9 kV, and Shashurin et al.
[3] applied HV pulses at repetition rate of 25 kHz with even lower voltage amplitude of 1.5 kV

but with gas flow rate increased up to 11.5 l/min to obtain DBD discharge in He gas.

Since 2004, when it was shown that CAPJ causes mammalian cells to detach from culture

surfaces [15], culminating evidence has indicated that CAPJ has significant effect on cell biol-

ogy. It is now clear that CAPJ affects cells in a dose-dependent manner. Namely, very low

doses affect cellular motility, integrin expression and membrane lipid peroxidation; higher

doses induce stress-related apoptosis; and very high doses cause necrosis [16]. It is also evident

that CAPJ mediates its action by reactive oxygen species (ROS), which lead to downstream

DNA damage [17]. The ability of CAPJ to induce DNA damage and apoptosis has attracted

oncological research of CAPJ treatment on numerous cancerous cell types, such as pancreatic

cancer [18], melanoma [19], glioblastoma [20], neuroblastoma [21], lung cancer [22], breast

cancer [23], colon cancer [24] and hepatocellular carcinoma [23]. While very few of the experi-

ments were done in-vivo, CAPJ is gaining ground as a promising new oncological modality

since it appears to be more potent against tumor cells rather than non-neoplastic cells [25].

Medical application of CAPJ, however, should take into account potential risks of the technol-

ogy to the human body. These may include high temperature, high voltage, poisonous gases,

ultraviolet (UV), soft x-rays and other electromagnetic radiation which can accompany CAPJ

generation, and should be either avoided or minimized [26]. Since 2004, when it was shown

that CAP causes mammalian cells to detach from culture surfaces [15], culminating evidence

has indicated that CAP has significant effect on cell biology. It is now clear that CAP affects

cells in a dose-dependent manner. Namely, very low doses affect cellular motility, integrin

expression and membrane lipid peroxidation; higher doses induce stress-related apoptosis;
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and very high doses cause necrosis [16]. It is also evident that CAP mediates its action by reac-

tive oxygen species (ROS), which lead to downstream DNA damage [17,27]. The ability of

CAP to induce DNA damage and apoptosis has attracted oncological research of CAP treat-

ment on numerous cancerous cell types, such as pancreatic cancer [18], melanoma [19], glio-

blastoma [20], neuroblastoma [21], lung cancer [22], breast cancer [23], colon cancer [24] and

hepatocellular carcinoma [23]. While very few of the experiments were done in-vivo, CAP is

gaining ground as a promising new oncological modality since it appears to be more potent

against tumor cells rather than non-neoplastic cells [25]. Medical application of CAP, however,

should take into account potential risks of the technology to the human body. These may

include high temperature, high voltage, poisonous gases, ultraviolet (UV), soft x-rays and

other electromagnetic radiation which can accompany CAP generation, and should be either

avoided or minimized [26].

Melanoma is the most aggressive skin cancer and the sixth most common cancer in North

America. Most cases of malignant melanoma are diagnosed at an early stage, when surgical

excision can be curative. In some cases, however, the tumor cannot be completely excised due

to its proximity to vital anatomical structures such as nerves and blood vessels [28]. In these

cases, where drug treatment or radiation therapy are mandated, CAPJ treatment may be an

attractive option. Several studies describing CAPJ effect on melanoma cells have been pub-

lished so far, but none of them tested the technology in-vivo [19,23,29–33]. A major technical

challenge that restricted the adaptation of CAPJ technology to the clinical setting is the inabil-

ity to easily maneuver the plasma plume over the treatment site. Since most described CAPJ

generation devices have diameter >5 mm and length of several cm, their integration in the

typical surgical routine is limited, especially in situations that necessitate extreme delicacy or

insertion of the device into small cavities. To overcome this obstacle, attempts have been made

to transport the plume from the CAPJ generating unit to the treatment location. Recent experi-

mental research [34] showed that CAPJ can be transported along distances�1 m inside dielec-

tric channels in the form of a "bullet" which acquires a potential almost equal to the high-voltage

electrode potential. The latter results in a high electric field at the head of the “bullet” allowing its

propagation in dielectric channel. However, this method cannot be used when the device is in

contact with the human body because of the increased stray capacitance between the plasma bul-

let and the body. This results in decrease of the “bullet” potential and, respectively leads to the

electric field decrease, which in turn stops the bullet propagation. To overcome this problem,

CAPJ should be generated at the vicinity of the treatment location, rather than being delivered

distally. For surgeons to adopt the technology, the dimensions of the plasma source should be

minimized to mm-scale, it should not be influenced by direct contact with the human body

(patient or surgeon), and it should be flexible, maneuverable and safe. Melanoma is the most

aggressive skin cancer and the sixth most common cancer in North America. Most cases of

malignant melanoma are diagnosed at an early stage, when surgical excision can be curative. In

some cases, however, the tumor cannot be completely excised due to its proximity to vital ana-

tomical structures such as nerves and blood vessels [28]. In these cases, where drug treatment or

radiation therapy are mandated, CAP treatment may be an attractive option. Several studies

describing CAP effect on melanoma cells have been published so far, but none of them tested the

technology in-vivo [19,23,29–33]. A major technical challenge that restricted the adaptation of

CAP technology to the clinical setting is the inability to easily maneuver the plasma plume over

the treatment site. Since most described CAP generation devices are bulky, their integration in

the typical surgical routine is limited, especially in situations that necessitate extreme delicacy or

insertion of the device into small cavities. To overcome this obstacle, attempts have been made

to transport the plume from the CAP generating unit to the treatment location. Recent experi-

mental research [34] showed that CAP can be transported along distances�1 m inside dielectric
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channels in the form of a "bullet" which acquires a potential almost equal to the high-voltage

electrode potential. The latter results in a high electric field at the head of the “bullet” allowing

its propagation in dielectric channel. However, this method cannot be used when the device is

in contact with the human body because of the increased stray capacitance between the plasma

bullet and the body. This results in decrease of the “bullet” potential and, respectively leads to

the electric field decrease, which in turn stops the bullet propagation. To overcome this prob-

lem, CAP should be generated at the vicinity of the treatment location, rather than being deliv-

ered distally. For surgeons to adopt the technology, the dimensions of the plasma source should

be minimized to mm-scale, it should not be influenced by direct contact with the human body

(patient or surgeon), and it should be flexible, maneuverable and safe.

The purpose of this study was to evaluate the efficacy of our newly developed CAPJ device

on melanoma in-vitro and in-vivo, and to evaluate the user-device interaction of this novel

CAPJ generation device in clinical setting.

Materials and Methods

Experimental setup

In the case of DBD discharges, the plasma generation occurs mainly during the rising and falling

time of the applied voltage pulse [35]. In order to improve the efficiency of the plasma genera-

tion, the repetition rate of the voltage pulses in our research was increased to RF frequency range

(>1 MHz). These pulses were applied by bursts with duration in the range of 4×10−4–8×10−4 s

and repetition rate 150–600 Hz adjusted by electronic scheme. This was used to change the duty

cycle of the application of these bursts in the range (0.03–0.5). The plasma parameters were con-

trolled by the change of the value of the voltage pulses, the duration of bursts and by the duty

cycle of the pulse generator operation. The latter allows us to change the average power delivered

to the plasma plume within the range 0.5 – 3W, depending on the treatment requirements. The

RF pulse generator is connected to plasma guns having different geometries by a commercial,

thin and flexible, coaxial cable with low dielectric losses (voltage breakdown of 2.5 kV) whose

lengths can be varied depending on the requirement of the experiment and the research carried

out. This cable also served as a resonance capacitor in the high-voltage part of the RF generator

thus providing a high efficiency of the power delivering to the plasma gun. In addition, the

shielding of the coaxial cable decreases electromagnetic radiation (~70 dB) and eliminates elec-

trical shock in the case of cable electrical breakdown. The generator produces RF pulses with

RMS voltage up to 1.4 kV (see block scheme of the generator in Fig 1) but in the experimental

research with CAPJ treatment, the maximum RMS voltage did not exceed 1.2 kV.

The laboratory setup is shown in Fig 2A, and a sketch of the plasma gun is shown in Fig 2B.

The CAPJ was generated inside a dielectric tube (Pyrex or quartz) by DBD RF discharge in

Penning gas mixture (98% Ne+2%Ar) allowing decrease of the breakdown voltage threshold

by several times as compared with other type of gases. RF pulses were applied to the ring-type

electrode whose size and location with respect to the end of the dielectric capillary tube

Fig 1. Block scheme of the RF generator and plasma gun for CAPJ generation.

doi:10.1371/journal.pone.0169457.g001
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determine the efficiency of the plasma formation and its potential. Thus, only unshielded ring

electrode is a source of electromagnetic radiation. In order to protect this electrode from

Ohmic contact with the treated body, thin Capton film layers were used providing electrical

insulation up to 10 kV against breakdown. Our resonant electronic scheme almost immedi-

ately (within one period of RF voltage, i.e.�1 μs) terminated the generation of high-voltage

pulses in the case of shorting between the ring electrode and the treated body. Also, let us note

that the replacement procedure of the plasma guns requires just several seconds. Several types

of plasma gun (Fig 2), differing in length (10 – 30mm) and outer diameter of the dielectric

tube (1.2 – 6mm), were designed and tested. As a result, we obtained generation of plasma

plumes with different diameters (0.5–5 mm) and lengths (5–40 mm). Also, a sheet-like shape

as well as multi-plasma plumes were generated using a rectangular tube and a multi-capillary

tube. For the research described herein, a plasma gun with a total diameter (tube and cable

together) of 3 mm was used at the end of a 150 cm-length coaxial cable.

Finally, the power delivered to the CAPJ was controlled using our electronic scheme. The

latter allows to perform treatment of different targets with known value of the energy delivered

to the plasma plume and to adjust the power delivered to the plume in the process of the exper-

iments whenever it is necessary.

Cell lines. Murine squamous cell carcinoma (SCC-7), Colon cancer (DLD-1) and murine

melanoma (B-16) cells were purchased from ATCC. FaDU hypopharyngeal cells were a king

gift from Dr. Richard Wong of Memorial Sloan Kettering. The murine pancreatic adenocarci-

noma cell line was created in our lab as previously described [36]. Cells were cultured in a

medium containing 10% FBS and penicillin streptomycin.

In-Vitro CAPJ experiments. Cells were detached from culture dishes using trypsin,

washed, and adjusted for 100,000 cells in 100μl PBS in a 1.5 Eppendorf. CAPJ was attached to a

small animal stereotaxic apparatus (Kopf, model 963, CA, USA), and the tip adjusted to a

height of 5mm above fluid level. CAPJ was then administered for designated time. Following

CAPJ treatment, cells were plated in pentaplicates in 96 well plate. 24 hours after CAPJ treat-

ment, 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT)

assay was performed according to manufacturer’s instructions to access cellular proliferation

(Biological Industries, Israel).

In-Vivo experiments. All animal experiments were approved by the institutional animal

care and use committee at the Technion, authorization # IL-132-12-2012. C57/bl mice were

purchased from Harlan. At the age of 6 weeks, mice fur was removed using small animal clip-

per, and 1 million melanoma cells were injected intra-dermally using a 2.5 μl Hamilton syringe

Fig 2. (a) External view of RF generator, plasma gun and gas power supply system. 1 –cylinder with working

gas; 2 –reducer; 3 –gas channel; 4 –power cord; 5 –pulse generator; 6 –cable of plasma gun; 7 –plasma gun

installed in dielectric optical bench; 8 –micrometric screw. (b) Plasma gun. 1 –flexible pipe (Tygon); 2 –

stainless steel connector; 3 –dielectric tube (Pyrex or quartz); 4—ring electrode; 5 –coaxial cable; 6 –internal

wire; 7 –connector; 8 –plasma plume.

doi:10.1371/journal.pone.0169457.g002
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(Hamilton, NV, USA). Mice were followed up routinely, and tumor size measured weekly by a

caliper. Tumor volume was calculated as (L x W x H). In vivo imaging system (IVIS) measure-

ments were done using the IVIS 200 imaging system (Perkin Elmer, MA, USA), with the fol-

lowing specifications: excitation: 445–490 nm, emission: 515–575 nm, background signal

reduction: 410–440 nm. For CAPJ treatment, mice were under anesthesia using isoflurane.

CAPJ was placed 1–2 mm above the skin, and treatment was done for designated time while

continuously moving the probe to cover the entire tumor + a margin of 0.5 cm. For tempera-

ture measurements, a thermal visor Flir AX5 (CA, USA) was placed 20 cm above treated

mouse. A Flir Tools application (CA, USA) was used to analyze data. CAPJ generation param-

eters for all the experiments, in-vitro and in-vivo, were: gas flow 3 l/min, RMS voltage of 1150

V, pulse duration of 800 μs repetition rate of 487 Hz.

Results

Plasma plume characterization

For characterization of the plasma plume, a copper target was placed at different distances

from the open end of the plasma gun that was used. No significant difference in the plasma

parameters was found when the target was either grounded or connected to the ground by a

several kO resistor. A typical dependence of the RF current amplitude and the power delivered

to the plasma relatively to the distance from the open end of the plasma gun is shown in Fig 3.

One can see that the increase in the distance from 1 mm to 15 mm results in an almost two

times decrease in the amplitude of the RF current and only an insignificant change in the deliv-

ered power. These data can be explained by the increase in the resistivity of the plasma plume

versus its length.

In general, it was found that the temperature of the target depends on the gas flow rate, the

plasma plume diameter, the applied RF voltage and the duty cycle. Namely, an increase in the

gas flow rate or plume diameter or a decrease in the duty cycle or voltage amplitude lead to a

decrease in the temperature of the target. Typical dependencies of the target temperature on

the distance of the target from the open end of the plasma gun are shown in Fig 4A for three

values of the amplitude of the RF voltage. One can see that only at an RF voltage amplitude of

1400 V, the temperature of the target increases up to 36˚C and in the case of smaller voltage

amplitudes the temperature of the target is almost independent of the distance,

remaining� 27˚C. In measurements made with the thermal visor (see Fig 4B) the plasma

Fig 3. Dependence of the RF current amplitude and the power delivered to the plasma plume on the

distance from the open end of the plasma gun having inner diameter of 1 mm. Gas flow rate Q = 0.5 l/

min, RMS voltage of 750V, repetition rate of 222Hz, pulse duration of 450 μsec. In order to measure the

temperature of the plasma plume and the target, a Ga-As thermometer (sensitivity of 0.1˚C) and a thermal

visor Flir AX5 [temperature range (20–42)˚C] were used.

doi:10.1371/journal.pone.0169457.g003
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temperature appeared to be close to the ambient one. This is because no extra IR emission was

measured in the gap between the plasma gun and the target.

A spectroscopic study of the plasma plume was carried out using an OceanOptics USB4000

spectrometer. Application of optical fiber, lenses and collimators allowed us to obtain spectra

of the plasma plume light emission at different locations with respect to the open end of the

plasma gun. In these experiments the target placed at different distances from the open end of

the plasma gun, was either dry or wet [37,38]. In general, different spectral lines of excited

hydrogen, oxygen, nitrogen were detected [39]. The main purpose of these experiments was

observation of free radicals which could be important for treatment of cancer. Indeed, intense

emission spectral line of excited OH- radicals was obtained at different distances from the

open end of the plasma gun. Typical example of this spectral band intensity and its dependence

on the distance from the open end of the plasma gun are shown in Fig 5. One can see that in

the case of dry target the intensity of the OH- spectral line decreases rapidly and oppositely to

the case of wet target where one obtains a rather greater uniformity of the OH- spectral line

intensity along almost 8 mm.

CAPJ biological effect

In order to evaluate the effect of our novel CAPJ device on cancer cell proliferation in-vitro,

we first applied plasma to different cancerous cell lines. 100,000 cells of each designated cell

line were suspended in 100 μl of PBS, and CAPJ probe was placed 5 mm above the liquid

surface.

Fig 4. (a) Dependence of the temperature of the target on the distance between the open end of the plasma

gun and the target. (b) Thermography of the CAPJ. 1 –thermal visor (Flir AX5), 2 –plasma gun; 3 –Ga-As

thermometer’s cable; 4 –view of thermal visor output; 5 –plasma location (white circle on the thermal visor

output corresponds to the black circle). Plasma gun with inner diameter of 3 mm. Gas flow rate of 3 L/min,

RMS voltage 750/850/1400 V, repetition rate of 222 Hz, pulse duration of 450 μsec.

doi:10.1371/journal.pone.0169457.g004

Fig 5. (a) Typical spectra of OH—band obtained at different distances from the open end of the plasma gun.

(b) Relative intensity of OH- (λ = 309.65 nm) versus the distance from the open end of the plasma gun.

Plasma gun with inner diameter of 4.1mm, RMS voltage of 1150 V, repetition rate of 476 Hz, pulse duration of

800 μs; gas flow rate of 3 l/min; spectrometer exposure time of 100 ms, Al solid target.

doi:10.1371/journal.pone.0169457.g005
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CAPJ was applied for different time durations, and as control, only gas flow was used while

the CAPJ generation was turned off. Following treatment, cells were seeded in 96 well plates,

and proliferation was evaluated 24 hours post treatment by XTT assay. Fig 6 shows that prolif-

eration of all tested cell lines was significantly repressed by CAP treatment of 60 s and longer.

While Pancreatic adenocarcinoma, skin squamous cell carcinoma and colon cancer were least

sensitive to CAPJ treatment of 30 s, melanoma cells displayed extreme sensitivity to the treat-

ment, with a mere 4% proliferation relative to control (p<0.001). This indicated, that like pre-

viously described CAPJ sources, our CAPJ device severely affects cancer cell proliferation in

general, and melanoma cell proliferation in particular.

Reports in the literature describe that CAPJ treatment to the culture medium alone, or

directly to the cells cause cell death [11,40]. In order to verify that our novel CAPJ device can

induce a similar effect, we applied CAPJ to two kinds of medium, with and without addition of

protein (fetal bovine serum, FBS), and as controls, cells were treated in saline as described

above. CAPJ was used for irradiation of medium for a designated amount of time, and after

this, medium was transferred to cultures of melanoma cells for 4 hours. Medium was then

aspirated, and normal culture medium put instead. 24 hours later, proliferation was assessed

by XTT. Fig 7 demonstrates that indeed CAPJ-treated media could hamper cell proliferation,

but is significantly less effective than direct treatment to cells of 30, 60 and 120 s (p<0.001 for

three groups). Protein addition to treated media had a protective effect at 60 s, but at 120 s of

treatment, saline with or without serum caused almost similar proliferation reduction (91%

and 84% proliferation reduction respectively, p = 0.003).

Before continuing to in-vivo experiments with melanoma tumors, we aimed to validate that

CAPJ treatment does not cause thermal damage to treated tissue. To this end, we used a ther-

mal visor to measure skin temperature of CAPJ treated mouse. The mouse was treated for 4

minutes, and skin temperature was captured in the beginning of the experiment, and each

minute later. Fig 8 demonstrates that maximal skin temperature was 50˚C at 180 s of treat-

ment, and that the temperature did not rise over the time course of the experiment. We con-

cluded that CAPJ treatment could be safely administered to skin surfaces for short durations,

without fear of causing thermal damage to the tissue.

Fig 6. (a-e) Cells were treated with CAPJ for designated times, and plated in pentaplicates. 24 hours later

proliferation was assessed by XTT. (p<0.05; p values were calculated by Student’s t-test).

doi:10.1371/journal.pone.0169457.g006
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Next we aimed to evaluate the efficacy of our CAPJ source on melanoma tumors in-vivo.

Here we compared two CAPJ treatment regimens of two weeks, with identical overall CAPJ

dose. In the single weekly dose, 125 s of CAPJ were applied once weekly, and in the fraction-

ated arm, 25 s of treatment were applied at five consecutive days a week (N = 3 per group) (Fig

9A). Treatment was initiated one week following a flank intradermal injection of 1 million B-

16 murine melanoma cells, when melanoma tumor larger than 1 mm in diameter was evident

on the skin. As controls, mice were injected with melanoma but not treated with CAPJ. At the

end of the study animals were scanned using IVIS with a green fluorescence protein (GFP) fil-

ter. This filter was chosen due to its ability to distinguish between the light-absorbing mela-

notic tumors and their GFP emitting surrounding [41]. Finally, mice were sacrificed, and the

tumors were measured and processed for pathology.

Measurement of the tumors demonstrated that CAPJ treatment caused significant reduc-

tion in tumor volume in both treatment arms (41.4% for single therapy arm and 54.7% tumor

volume reduction in the fractionated arm compared to control, p<0.001). However, the differ-

ence between the two groups was not significant (p = 0.6) (Fig 9B). IVIS measurement

strengthened these results, showing that melanoma penetration into the epidermal layer was

Fig 7. Effect of activated medium on cancer cell proliferation. Direct treatment of cells had better efficacy

in proliferation reduction than activated medium (p<0.001 for all conditions). Protein addition to activated

medium had a protective effect on the cells for 60 seconds of treatment (23% proliferation reduction vs. 69%

for saline only (p<0.001).

doi:10.1371/journal.pone.0169457.g007

Fig 8. Wild type mouse was treated by CAPJ for 4 minutes. Each minute skin temperature was recorded

by thermal visor. Experimental conditions: Gas flow 3 l/min, RMS voltage of 1150 V, pulse duration of 800 μs

repetition rate of 487 Hz.

doi:10.1371/journal.pone.0169457.g008
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Fig 9. (a) Experiment scheme. Two experimental arms: single weekly dose, and fractionated therapy. Both arms had the

same overall CAPJ treatment duration. Experimental conditions: Gas flow 3 l/min, RMS voltage of 1150 V, pulse duration

of 800 μs repetition rate of 487 Hz. (b) Tumor volume measurement for the three groups at the end of the experiment. (p

values were calculated by student’s t-test). (c) IVIS image of control mice, and single arm treatment mice. Melanoma

tumor is seen in grey.

doi:10.1371/journal.pone.0169457.g009
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reduced by 48.2% in the single-dose group relatively to controls (120,868 pixels as compared

to 62,608 pixels) (Fig 9C).

Fig 10A depicts H&E staining of the melanoma tumors. In the single dose arm, a confined

area of necrotic tumor was seen, with a maximal depth of 15 mm from skin surface. In the frac-

tionated treatment arm, necrotic areas were evident, but were more sporadic. No necrotic

areas were seen in the untreated control group. In order to examine CAPJ effect on normal

skin, three groups of mice (N = 3 per group) were assigned to receive single weekly dose or

fractionated CAPJ therapy as above. Controls were not treated by CAPJ. Pathological examina-

tion of skin specimens from mice in the three groups demonstrated no crude abnormality of

all dermal layers (Fig 10B).

Discussion

The incidence of cutaneous melanoma, a malignancy notoriously known for being resistant to

therapy, is increasing at 2–5% per year, and disproportionately targets young individuals. The

cornerstone of treatment of melanoma remains surgical excision, although alternative therapeu-

tic options continue to improve with time. Because up to 29% of cases initially diagnosed as

melanoma in-situ (confined to the epidermis) are upstaged to invasive malignant melanoma

after pathology review, local excision with margin of at least 0.5–0.6 cm is recommended. In

some cases, wide margin excision cannot be achieved due to proximity to vital anatomical struc-

tures such as nerves or blood vessels, or when severe cosmetic issues evolve, especially in the

head and neck region. In these cases second-line treatments as topical agents, intralesional

Fig 10. H&E images (a) of a representative tumor in the single, fractionated and control treatment arms. (b) of

mice in the skin control group, treated by the three regiments.

doi:10.1371/journal.pone.0169457.g010
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alpha-interferon, radiation, and laser therapy are being explored as adjuncts to surgery,

although their efficacy is not yet undoubtedly proven [28]. For these patients, for whom

wide margin excision could not be achieved, CAPJ therapy might prove to be an appealing

alternative.

Few studies investigated the use of CAPJ against melanoma, all of them were performed in-

vitro. Despite being preliminary, all have demonstrated an anti-proliferative effect of CAPJ on

melanoma cells. Lee, Kim and their colleagues, have demonstrated that CAPJ caused apoptosis

in melanoma cells, which is accompanied by loss of integrins and focal adhesion kinase from

the cells membrane [31,32]. Ishaq et al. showed that CAPJ causes melanoma cells to over-

express TP73, leading to growth arrest and apoptosis [29]. Importantly, Ardnt et al. showed

that 2 minutes of CAPJ treatment caused irreversible cell cycle arrest, and induction of phos-

phor-H2AX, indicative of DNA damage [19]. In line with these previous data, our in-vitro

results demonstrate that melanoma cells are extremely sensitive to CAPJ treatment, and as lit-

tle as 30 seconds can reduce cell proliferation in more than 90% (Fig 6). Kurake et al. have pro-

posed that H2O2 and NO2
- generated in cell medium following CAPJ treatment are sufficient

to cause cell cycle arrest [40]. Our experiments indicate that indeed, CAPJ-treated-medium is

toxic to melanoma cells, but significantly less than the direct effect of CAPJ. Moreover, we

show that addition of proteins to CAPJ activated media reduces its toxicity (Fig 7), probably

due to increased decay of radicals in protein rich environment relatively to saline alone. Few

studies investigated the use of CAP against melanoma, all of them were performed in-vitro.

Despite being preliminary, all have demonstrated an anti-proliferative effect of CAP on mela-

noma cells. Lee, Kim and their colleagues, have demonstrated that CAP caused apoptosis in

melanoma cells, which is accompanied by loss of integrins and focal adhesion kinase from the

cells membrane [31,32]. Ishaq et al. showed that CAP causes melanoma cells to over-express

TP73, leading to growth arrest and apoptosis [29]. Importantly, Ardnt and Kalghatgi showed

that CAP treatment caused irreversible cell cycle arrest, and induction of phosphor-H2AX,

indicative of DNA damage [19,27]. In line with these previous data, our in-vitro results dem-

onstrate that melanoma cells are extremely sensitive to CAP treatment, and as little as 30 sec-

onds can reduce cell proliferation in more than 90% (Fig 6). Kurake et al. have proposed that

H2O2 and NO2
- generated in cell medium following CAP treatment are sufficient to cause cell

cycle arrest [40]. Our experiments indicate that indeed, CAP-treated-medium is toxic to mela-

noma cells, but significantly less than the direct effect of CAP. Moreover, we show that addi-

tion of proteins to CAP activated media reduces its toxicity (Fig 7), probably due to increased

decay of radicals in protein rich environment relatively to saline alone.

Preliminary data suggests that CAPJ has selective-toxicity towards cancer cells rather than

non-neoplastic cells, but the mechanism that leads to CAPJ selectivity is poorly understood.

Some researchers attribute the selective effect of CAPJ to lower reserves of anti-oxidants in

cancer cells, which cannot oppose reactive oxygen and nitrogen species (ROS and RNS) [42].

In turn, ROS and RNS lead to DNA damage that hampers cellular proliferation, much like the

effect of conventional radiation therapy. Although melanoma was traditionally considered as

radio-insensitive, it has been reputedly demonstrated that melanoma is sensitive to high-dose

per fraction radiation [43,44]. Inspired by these data, we have planned our in-vivo experiments

to demonstrate whether melanoma is more susceptible to high-dose per fraction CAPJ treat-

ment, like radiotherapy. Although not statistically significant, our experiments demonstrate a

clear trend of higher efficacy of CAPJ treatment when provided in high-dose per fraction (Fig

9). The ideal method for destruction of cancer cells is the induction of apoptosis, rather than

necrosis which inflicts sever pain and immediate inflammatory response. Supporting this is

our observation that response to CAPJ treatment takes 24–72 hours to develop (no immediate

burn, blister, bleeding or edema are seen in the treatment site), indicating apoptotic process.
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Only later does tissue damage begin to be evident. Pathology specimens presented in Fig 10

(that were taken 1 week following treatment cessation) further strengthen our observation,

showing a confined area of tumor necrosis in the high-dose per fraction treatment arm, rela-

tively to sporadic necrosis in the low-dose per fraction arm. Taken together, these results

might indicate that CAPJ and radiotherapy share some similarities in their mechanism of

action, possibly by causing ROS-dependent DNA damage. The role of ROS and RONs and

their contribution to plasma selectivity, however, was not addressed in this study. Future

research should examine whether boosting the amount of radical scavengers (like N-Acetyl-

Cysteine) protects cancer cells from CAPJ-induced apoptosis, and whether low anti-oxidant

reserve (such as glutathione) explain melanoma cell susceptibility to CAPJ.

The potential use of CAPJ technologies in medicine has been addressed in the literature for

the last decade, but disappointingly, little progress was made to bring this technology to the

bedside. While crucial safety issues that have yet been addressed might explain the slow adop-

tion of this technology, a main problem remains to be the design of CAPJ devices to be suitable

for medical use. Bearing in mind pre-requests for successful clinical adoption, we designed our

CAPJ device to be narrow, long and flexible, enabling the operator to direct the CAPJ plume

directly to the treatment location with maximal precision. The electric and gas cords connect-

ing the generator with the CAPJ probe are long, so that the power generator could be placed

afar from the patient, leaving the treatment sight visible and approachable. Importantly, the

unique electrical properties of our CAPJ device does not endanger the patient or the operator

with high current electricity.

In conclusion, our results demonstrate the efficacy of CAPJ treatment against melanoma

in- vitro and in-vivo. Our new approach to create CAPJ at the tip of an elongated flexible capil-

lary using low electrical currents, might pave the way for new opportunities to use CAPJ in the

field of oncology.
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20. Köritzer J, Boxhammer V, Schäfer A, Shimizu T, Klämpfl TG, Li YF, et al. Restoration of Sensitivity in

Chemo—Resistant Glioma Cells by Cold Atmospheric Plasma. PLoS One. 2013; 8.

21. Walk RM, Snyder JA, Srinivasan P, Kirsch J, Diaz SO, Blanco FC, et al. Cold atmospheric plasma for

the ablative treatment of neuroblastoma. J Pediatr Surg. 2013;

22. Kim JY, Ballato J, Foy P, Hawkins T, Wei Y, Li J, et al. Apoptosis of lung carcinoma cells induced by a

flexible optical fiber-based cold microplasma. Biosens Bioelectron. Elsevier B.V.; 2011; 28: 333–338.

doi: 10.1016/j.bios.2011.07.039 PMID: 21820891
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