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The convergence of shock waves in water, where the cross section of the boundaries between

which the shock wave propagates is either straight or parabolic, was studied. The shock wave was

generated by underwater electrical explosions of planar Cu wire arrays using a high-current genera-

tor with a peak output current of �45 kA and rise time of �80 ns. The boundaries of the walls

between which the shock wave propagates were symmetric along the z axis, which is defined by

the direction of the exploding wires. It was shown that with walls having a parabolic cross section,

the shock waves converge faster and the pressure in the vicinity of the line of convergence, calcu-

lated by two-dimensional hydrodynamic simulations coupled with the equations of state of water

and copper, is also larger. VC 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4919604]

I. INTRODUCTION

Obtaining extreme states of matter is a key issue in

research in such fields as inertial confinement fusion,1 astro-

physics,2 and x-ray lasers.3 Currently, several approaches are

applied to obtain extreme states of matter, for instance,

z-pinch,4 high power lasers,5 and heavy ion beams.6 These

approaches require expensive experimental setups with stored

energy of �105 J. Recent experiments7–9 with setups having

moderate stored energy of �6 � 103 J showed that extreme

states of matter can be obtained using either underwater elec-

trical explosion of single wires or converging shock waves

(SW) generated by underwater electrical explosion of cylin-

drical or spherical wire arrays. In the case of the explosion of

single wires in water, an energy density up to 500 eV/atom,

pressure of �1010 Pa, and temperature of a few eV were

achieved inside the wires.10 In the case of converging SW,

the largest values of the pressure (�6 � 1012 Pa), density

(�9 g/cm3), and temperature (�16 eV) of the water in the vi-

cinity of the implosion were obtained for a spherical wire

array explosion.9 In these experiments, assuming spherical

uniformity of the converging SW and self-similarity of the

SW propagation in water, the value of pressure PSW versus

the distance from the origin, i.e., radius RSW, increases as

PSW / R�1:33
SW , due to fast decrease in the SW surface as

S / R2
SW :

Mdivnishvili et al.11 suggested that using boundaries

with a geometry providing faster decrease in the SW surface

S / R3
SW , the parameters (pressure, density, and temperature)

of matter in the vicinity of the SW’s convergence can be

increased as compared with the case of a spherical SW im-

plosion. Indeed, in the case of an adiabatic SW convergence,

as the surface of the SW decreases faster, due to energy con-

servation, the energy density behind the SW front must also

increase faster. This leads to a higher pressure gradient and,

respectively, to faster propagation velocity. Self-similar

analysis and calculations based on the Checter-Chisnell-

Witham12 theory showed similar results, namely, a 1.5 times

larger power-law index in super-spherical convergence than

in a spherical one. In addition, experimental studies with pla-

nar and spherical bounding walls touching each other at the

symmetry point showed that indeed the SW generated by the

electrical explosion of a ring-surface discharge converges

faster than one generated by a cylindrical implosion. These

experiments were carried out in air at �20 ls timescale of

the surface discharge duration, which could lead to signifi-

cant expansion of the discharge channel. The latter can be

avoided in underwater electrical explosion of wires because

of the near incompressibility of water.

In this paper, we present the results of experiments and

two-dimensional (2D) hydrodynamic numerical simulations

of the propagation of an SW in water limited by walls having

either a straight or parabolic cross section (hereafter called

straight/parabolic walls). The SW was generated by the

underwater electrical explosion of a planar wire array. The

data obtained showed that the SW propagation between para-

bolic walls was faster and resulted in larger values of pres-

sure at the axis of convergence. Thus, this proof-of-principle

experiment showed that indeed parabolic walls contribute to

SW propagation velocity, thus suggesting a more compli-

cated experiment where parabolic walls will be used to

obtained the SW convergence proportional to R3
SW .

II. EXPERIMENTAL SETUP

A nanosecond timescale, high-voltage generator13 based

on a Marx generator and a water-insulated coaxial forming

line producing at the matched load a pulse with voltage and

current amplitudes of �110 kV and �70 kA, respectively,

and pulse duration of �80 ns at full width at half maximum

was used for the explosion of the planar wire array. The

scheme of the experimental setup is shown in Fig. 1(a).

The array, consisting of eight wires, each of 63 lm in di-

ameter and 4 cm in length, was placed in an experimental

chamber at a distance of �5.65 mm above the axis of two

stainless steel walls of either straight or parabolic form, which

were grounded and connected to each other (see Fig. 1(b)).

The height (the distance between the axis and the top of the

walls) and width of both straight and parabolic walls were

5 mm and 30 mm, respectively. This array was connected

between the cathode holder and the grounded electrode via a

current viewing resistor (CVR). The experimental chamber,

0021-8979/2015/117(16)/163305/5/$30.00 VC 2015 AIP Publishing LLC117, 163305-1

JOURNAL OF APPLIED PHYSICS 117, 163305 (2015)

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Download to IP:  132.68.75.150 On: Sun, 17 Apr 2016

08:07:41



which had two windows for optical observations, was filled

with tap water with resistivity of �4 kX�cm. Tap water was

used to prevent high frequency oscillations on the measured

voltage waveform, caused by the reflection of an electromag-

netic wave while it propagates in the experimental chamber

along the cathode holder and wire array having different wave

impedances. However, due to relatively low resistivity of

water, �10% of the input current was flowing through it. A

capacitive voltage divider and CVR were used to measure the

discharge voltage and current, respectively. A continuous

wave laser (20 mW, k¼ 532 nm) was used for backlighting

the generated SW through the windows. Shadowgraph images

were captured using a 4QuickE (Stanford Computer Optics,

Munich, Germany) fast framing (frame duration of 5 ns) cam-

era (see Fig. 1(a)) at different time delays with respect to the

beginning of the SW propagation.

III. EXPERIMENTAL RESULTS

To obtain the operation of the generator with the largest

energy density deposition into the exploding wires, the

optimal diameter, length and number of wires were first

roughly estimated. The diameter D and number n of wires

were estimated using the specific current action integral

h ¼ S�2
Ð t exp

0
I2ðtÞdt, where S¼ nS0 is the total cross-section

area of the wires, S0¼pD0 is the cross-sectional area of a

single wire, and I(t) is the discharge current. The length of

the wires was estimated using energy necessary for the wires

to complete evaporation and which should be in the range of

g¼ (20–30)% of the initial energy W0 stored in the pulse

generator: l � gW0=ðkevnS0qCuÞ, where kev is the specific

energy density for evaporation and qCu is the specific density

of copper. Then, a final selection of the wires was deter-

mined by conducting several experiments using varying wire

diameters and numbers. These parameters of wires allow one

to obtain an almost aperiodic discharge, where �80% of the

stored energy is delivered to the exploding wire array during

approximately a quarter of a period of the discharge. Here,

let us note that due to the small compressibility of water (adi-

abatic index c¼ 7.15), the exploding wire expansion is �102

times slower than in the case of a wire explosion in vacuum

or gas. Thus, the decrease in density of the exploding wire

during its explosion is not significant, preventing the fast

increase of thermal instabilities.14 Similarly, the m¼ 0 mag-

netohydrodynamic instability does not have sufficient time

to be developed due to the rather large density of the wire

and nanosecond timescale of the discharge current. Other

magnetohydrodynamic instabilities with m� 1 require larger

timescales to be developed, especially in the case of water as

a background medium. In addition, estimates showed that in

spite of tens of nanoseconds rise-time of the current, the skin

effect is not pronounced due to a small (tens of microns) di-

ameter of the wire and ns-time scale of wire heating leading

to fast increase in the resistance of wires.

Typical waveforms of the discharge current and resistive

voltage, together with the calculated power and energy depo-

sition into the wires, are shown in Fig. 2. For power and

energy calculations, the measured voltage was corrected on

inductive voltage uin ¼ LðdI=dtÞ to calculate resistive volt-

age ur ¼ u� uin. Here, L is the inductance of the cathode

holder and load measured in generator shots with a short-

circuit load having inductance similar to that of the wire

array. It can be seen that in the generator shot with the wire

array explosion, the rise time of the output pulse of the gen-

erator was �80 ns with a �45 kA peak current (current den-

sity of �2 � 108 A/cm2) and �80 kV peak resistive voltage.

In addition, it can be seen that the main energy density depo-

sition occurs within �80 ns with a deposited energy density

of �7 kJ/g and peak power of �2.8 GW. The energy deposi-

tion process into the wire consists of several stages, namely,

the heating, melting, vaporization, and plasma formation.

During the first three stages, the wire array resistance

increases up to �2.5 X right before the explosion, i.e., each

wire increases its resistance up to �20 X. Here, by explosion

we mean transition of the discharge channel from liquid-

vapor to vapor-plasma states of copper, with resistivity deter-

mined mainly by electron-neutral collisions and depending

on temperature as T�1=2.15 Thus, one can state that the wire

explosion is characterized by the formation of a low-ionized

and non-ideal (coupling parameter of >1) plasma. The

decrease in the discharge current is accompanied by a

�2� 105 cm/s radial expansion of the wires. The latter leads

to the formation of a compressed and shocked water layer

around the wire, and consequently to the formation of an

expanding SW. The overlapping of these SWs, generated by

all of the wires in the array, leads to the formation of a single

planar SW propagating in water with either straight or para-

bolic boundaries.

Typical shadow images of SWs are shown in Fig. 3 for

the two different boundary geometries. Cu wires were

welded between the “teeth” electrodes shown in Figs. 3(a)

and 3(c). Two overlapping shadow images of the SW front

(indicated by white arrows) obtained at different time delays

sd with respect to the beginning of the discharge current are

shown in Figs. 3(b) and 3(d). Here, let us note that at shorter

time delays, the SW front is less symmetric than at longer

time delays. This effect does not relate to the difference

FIG. 1. (a) Experimental setup. (b) Two straight-wedge walls from optical

observation viewpoint (along the z axis). (c) Left—parabolic walls. Right—

straight walls.
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between boundary geometries and could be related to some

non-uniformity in the stretching of the Cu wires.

The obtained time-of-flight (TOF) data of the SW propa-

gation in water with different boundary geometries are shown

in Fig. 4. It can be seen that at sd� 2 ls, the velocity of SWs

propagating in water between parabolic and straight walls is

similar and its value is �1.8� 105 cm/s. However, at larger

values of sd, the velocity of the SW propagating in water

between parabolic walls exceeds the velocity of the SW prop-

agating in water between straight walls. The maximum values

of the SW velocity calculated using the obtained shadow

images of the SW front and the known time difference

between frames were �2.9� 105 cm/s and 5.4� 105 cm/s for

the SWs propagating in water between straight and parabolic

walls, respectively. Thus, the TOF results showed that indeed

the application of parabolic boundaries results in faster SW

propagation velocity as compared with the case of straight

boundaries. Qualitatively, this can be explained by the cross-

sectional area of water which SW penetrates in direction of its

convergence decreasing differently in case of straight and par-

abolic boundaries. In the case of rigid boundaries, due to

almost complete reflection of the SW, the energy density

behind the front of the SW increases. This increase in the

energy density, which is larger in the case of parabolic walls,

leads to larger density and pressure behind the SW front, and

consequently to faster SW propagation velocity.

IV. DISCUSSION

To estimate the parameters of water in the vicinity of

the line of convergence, the 2D hydrodynamic numerical

simulation described in Ref. 16 was used. The simulation is

based on the finite volume method and uses conservation

laws of mass, energy, and momentum coupled with the equa-

tions of state (EOS) of water and copper.17 The cross sec-

tions of the geometries discussed in Sec. III were divided

into a triangular mesh using the Delaunay triangulation algo-

rithm.18 Each triangle in the mesh contained information of

pressure, temperature, density, and specific energy, and the

dots where the triangles meet contained information of ve-

locity, position, and acceleration. HD simulations take into

account boundary conditions, i.e., when a shock wave propa-

gating in water approaches the boundary. The boundary con-

dition imposed on the frame of the mesh was v? ¼ 0, where

v? is the transverse velocity of water.

The three conservation law equations are

d

dt

ð
qdV ¼ 0; (1)

d

dt

ð
q~�dV �

ð
Pþ Qð Þ~ndA ¼ 0; (2)

de
dt
þ Pþ Qð Þ d

dt

1

q

� �
¼ 0; (3)

where q;~v;P; e are density, velocity, pressure, and specific

energy, respectively. Q is the artificial viscosity that was

added at each time step to smooth the SW front over several

FIG. 2. (a) Current and resistive volt-

age measured by a CVR and a capaci-

tive voltage divider, respectively. (b)

Calculated power and energy.

FIG. 3. (a) Image of teeth electrodes and parabolic walls; (b) two overlap-

ping frames of SW propagation with parabolic walls obtained at sd� 700 ns

and sd� 1200 ns; (c) image of teeth electrodes and straight walls; and (d)

two overlapping frames of SW propagation with straight walls obtained at

sd� 1700 ns and sd� 2200 ns.

FIG. 4. Distance of the SW front from the exploding wires versus the time

from the beginning of the discharge current.
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mesh triangles for the differential equations’ solution to be

valid. This viscosity was calculated using the generalized

form developed at the Lawrence Livermore Laboratory.19 In

the 2D case, the volume integrals become surface integrals

over the triangles and the area integral becomes a line inte-

gral over the triangle sides. Equation (1) states that the mass

of each triangle does not change during the simulation.

Using the known value of pressure at every triangle, the

movement of the dots was calculated using Eq. (2), and then,

the specific energy was calculated using Eq. (3). The only

inputs to the simulation were the experimentally obtained

energy deposition into the wires and the EOS of water and

copper.

Snapshots of the pressure values from the simulation for

both (straight and parabolic) geometries at sd¼ 1.5 ls are

presented in Fig. 5. It can be seen that at sd¼ 1.5 ls, the eight

Cu wires undergo radial expansion and the SW propagates

slightly farther in the case of parabolic walls than that of

straight walls. The simulated TOF data of the SWs’ propaga-

tion for the two geometries are shown in Fig. 6. One can see

that at sd� 2 ls, the velocity of the SW in the case of para-

bolic walls becomes larger than the velocity of the SW in the

case of straight walls, which agrees with the experimental

data. Fig. 6 also shows the simulated TOF data of the SWs

propagation without any walls, to verify the validity of the

simulation, and indeed, the velocity of the propagation of the

SW without any walls is found to be significantly smaller, at

sd� 2.5 ls.

The temporal evolution of the pressure for the considered

boundary geometries at a distance of 150 lm from the axis of

implosion is shown in Fig. 7. It can be seen that the pressure

reaches its peak �180 ns earlier and the value of the pressure

is �5 times higher in the case of parabolic walls. The

Rankine-Hugoniot relations20 for the Mach number of the SW

velocity and EOS for water were used to compare the pressure

calculated in the simulation to the experimental results

M ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d

dn � 1ð Þ
n d� 1ð Þ

s
; (4)

P� P0 ¼ 3� 108ðdn � 1Þ ½Pa	 ; (5)

where d 
 q=q0 is the water compression, q and q0 are the

density of water behind the SW front and at normal condi-

tions, respectively, n ¼ 7:15 is the adiabatic index for water,

and M is the Mach number of the water flow. The values of

pressure calculated using Eqs. (4) and (5) and the value of M

obtained from the experimentally measured TOF of the SW

for both straight and parabolic boundaries are P Exp
straightðRSW

¼ 0:660:2 mmÞ ¼ 2:260:6 GPa and P Exp
ParabolicðRSW ¼ 1:05

60:2 mmÞ ¼ 3:5760:6 GPa. The values of pressure obtained

by 2D simulations are PSim
straightðRSW ¼ 0:6 mmÞ ¼ 2:26 GPa

and PSim
ParabolicðRSW ¼ 1:05 mmÞ ¼ 4:19 GPa. One can see a

rather good agreement between experimental and numerical

results showing that in the parabolic case, the pressure behind

the front of the SW is larger in the case of the SW conver-

gence in water with parabolic boundaries.

V. SUMMARY

To summarize, carried out experimental and 2D hydro-

dynamic numerical investigation showed that the application

FIG. 5. Snapshots of simulation at sd¼ 1.5 ls: (a) straight walls and (b) par-

abolic walls. The different colors represent deviations from 105 Pa, with the

red colors being the largest deviation (�600 MPa). The main increment of

pressure is obtained only at the origin.

FIG. 6. Simulated TOF of the SW. t¼ 0 is the beginning of the energy depo-

sition into the wires.

FIG. 7. Temporal evolution of the

pressure at a distance of 150 lm. (a)

Straight walls and (b) parabolic walls.
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of parabolic walls contributes to an increase in the water pa-

rameters at the line of convergence of an SW generated by

the underwater electrical explosion of a planar wire array.

We are planning to study SW implosion in azimuthally sym-

metrical parabolic geometry, and we expect to obtain greater

values of pressure at the vicinity of convergence than in the

case of a spherical converging SW.
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