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The results of experiments with underwater electrical explosion of conical arrays of copper wires

are presented. A pulsed generator producing a 300 kA-amplitude current with a 1.2 ls rise time was

used in the explosion of the arrays. As a result of the explosion, fast-moving water jets, with veloc-

ities of up to 1200 m/s, were observed being ejected from the surface of the water covering the wire

array. The position of the water jets was measured by multiple-exposure fast framing imaging. The

apex angle of the array or the thickness of the water layer above the arrays was altered from shot to

shot, which changed the resulting velocities and shapes of the emitted jets. A numerical model,

based on the models of cumulation and penetration of a jet through material of similar density, is

suggested. The velocities of jets obtained by this model agree well with the experimentally

observed jet velocities. VC 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4905548]

I. INTRODUCTION

The phenomenon of water jets generated as a result of

underwater explosions of different explosives in the vicinity

of the water surface (shallow underwater explosions) has

been known since as early as the beginning of the 20th cen-

tury. Since then, many experimental and theoretical studies

were devoted to this subject and the main results are sum-

marized in textbooks.1,2 In order to observe the generated

jets, framing cameras were placed above and under the sur-

face of the water. The framing images acquired by the cam-

eras placed underwater showed that the explosion produces a

shock wave (SW), the front of which roughly reproduces the

initial shape of the explosive charge. This SW expands,

reaches the surface of the water, and refracts from it. At the

location of the explosive charge, one obtains the formation

of a cavity, which also expands. The reflected SW reaches

this cavity and re-refracts from it. In turn, the cavity experi-

ences collapse because of the pressure of the surrounding

water. The framing images obtained by the camera posi-

tioned above the water showed that, after a certain time with

respect to the beginning of the explosion, the free surface of

the water becomes concave. At that time, a fast-rising water

jet emerges from the water surface. It was observed that this

fast rising jet has a diameter smaller and a height larger than

the depth of the charge.

Several models have been proposed to explain this phe-

nomenon, two of which provided the most reasonable

explanations.3,4 Both of these models assume that the role of

the cavity in jet formation is crucial, the incompressibility of

water, and that the role of the SW in the jet formation is neg-

ligible. The model described in Ref. 3 considers jet forma-

tion due to the interaction between the upper part of the

expanding cavity and the free surface of the water. In con-

trast to this model, the model described in Ref. 4 suggests a

hypothesis that the lower part of the cavity deforms in such a

way that an upward-moving cumulative jet is generated,

which perforates the free water surface. The results of

experimental research, with different masses of explosive

charges placed at different depths and with different model-

ing showed that, indeed, the cavity plays a crucial part in the

jet formation, the jet dynamics can be simulated within the

framework of a model of an incompressible fluid, and the

impact of the SW on the jet formation is negligible. The jet

generation can be considered a cumulation process,5 namely,

the increase in the density of water in some confined space

due to dynamic evolution of the cavity, which leads to the

acquisition of a substantial vertical velocity by the jet.

A similar phenomenon of cumulation is obtained in the

case of hollow explosive charges.6 In this approach, a cone-

shaped cavity is formed by a thin sheet of metal having a rel-

atively low melting point, with a slab of high explosives

attached to its external part. The detonation of the explosive

material causes the sheet to be accelerated toward the cav-

ity’s axis, where it collapses. This leads to the formation of

two cumulative jets, namely, a fast, thin, axis-directed jet

moving toward the basis of the cone, and a slower, thicker

jet moving in the opposite direction. This process can be

described by a model of an incompressible fluid.

Recently, experimental research showed that the under-

water electrical explosion of either cylindrical7 or spherical8

wire arrays can be used to generate converging strong SW,

characterized by pressure values of >1011 Pa behind the SW

front in the vicinity of either the implosion axis or the origin.

In the present paper, the results of experiments with under-

water electrical explosion of conical wire arrays, which gen-

erate converging strong SW and cumulative water jets, are

described. These fast jets penetrate the water layer above the

array and emerge into the air above the water surface. In the

“Discussion,” the model describing the process of the com-

pression of water by the explosion of a conical wire array,

the generation of the water jet, and its penetration of the

water layer above the cone and emergence into the air, is

presented. There is satisfactory agreement between the cal-

culated and the measured values of the velocity of the jet for

different geometries of cones.
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II. EXPERIMENTAL SETUP

The cone wire array was constructed of 40 copper wires,

each being 0.1 mm and �40 mm in diameter and length,

respectively. The wires were stretched between two circular

brass electrodes of different diameters (see Fig. 1 and

Table I), thereby allowing the apex angle of the conical array

to be varied. A hollow stainless-steel reflector was placed

around the wire array, in order to reflect part of the SSW,

which was expanding outward, back to the axis.9 This reflec-

tor had the same apex angle as the wire array and it was con-

nected to the high-voltage electrode. A plastic insert, 2 mm

in thickness, was used to prevent a discharge between the

reflector and the grounded electrode.

The wire array was placed in a de-ionized water-filled,

stainless-steel chamber with windows for optical observations.

An expanded beam of a 40 mW continuous wave 532 nm

laser was used for back-lighting (see Fig. 2). The wire array’s

location resembled a “V,” i.e., its apex was pointing down, to-

ward the high-voltage electrode, and the cone base was just

below the level of the windows (see Fig. 3). A fast framing

4QuikE camera (Stanford Computer Optics) was used to ac-

quire the shadow images of the generated jet propagating in

air.

The wires were exploded by a current pulse with an am-

plitude of �270 kA and rise time of �1.2 ls supplied by a

high-current pulse generator10 charged up to 27 kV (stored

energy of �3.6 kJ). During the explosion, each wire pro-

duced its own cylindrically expanding SW. At some typical

distance (roughly equal to the distance between the wires

axes), the neighboring SWs overlap with each other, thus

forming a single converging conical SSW, similar to that

obtained in experiments with cylindrical wire arrays.7 One

can consider this converging conical SW to be a source of

the axis-directed water flow behind the SW front. The

implosion of this azimuthally symmetrical water flow at the

axis of the cone generates an upward-directed water jet. The

latter is accelerated toward the top of the cone, penetrates the

water layer above the cone, and is ejected into the open air.

The thickness of the water layer was varied in the range of

1–6 mm in order to examine the influence of the thickness on

the jet velocity.

A spatial calibration was carried out prior to the experi-

ments, using an optical target (see Fig. 4) placed at the loca-

tion where the jet was expected to arrive during the

experiment, i.e., at the axis of the cone just above the wire

array. Prior to each experiment, an image of this optical target

was obtained, providing the spatial conversion ratio between

the observed dimensions of the jet in pixels on the screen of

the 4QuikE camera and the actual size in millimeters.

After its emergence into the air, the fast water jet blocks

part of the back-lighting beam. This results in a shadow

image or a series of images recorded by the 4QuikE camera.

In Fig. 5, one can see the tip of the fast jet emerging into the

air (a dark shadow just above the water) and the fast SW

generated in air by this jet (a thin Gaussian-shaped shadow).

These shadow images, together with the simultaneous acqui-

sition of the times at which each frame was obtained with

respect to the beginning of the discharge current, allow the

calculation of the time-of-flight (TOF) of both the jet and the

SW that precedes it. Thus, when a multiple exposure image

(several overlaid frames of 5 ns time duration each and time

delay between frames of several ls) was obtained, the veloc-

ity of the SW and of the jet could be deduced (see Figs. 7

and 8 in Sec. III).

FIG. 1. External view of the arrays without (a) and with (b) a reflector.

TABLE I. The combinations of the inner diameters of the conical array elec-

trodes and the resulting apex angles.

Type of array

Ground electrode

holder

diameter (mm)

High-voltage

electrode holder

diameter (mm)

Resulting

cone apex

angle (deg)

Conical 20 5 2h03¼ 21.24

Conical 12 2.5 2h02¼ 13.54

Conical 10 5 2h01¼ 7.16

Cylindrical 12 12 2h¼ 0

FIG. 2. Optical setup. (1) 40-mW CW 532 nm laser; (2) beam expanding

lenses; (3) aluminized mirrors; (4) experimental chamber; (5) conical wire

array (top view); (6) 532 nm narrow (1 nm) band-pass filter; (7) focusing

objective; (8) fast framing camera 4QuickE.

FIG. 3. Assembly of the conical wire array holder without a reflector (a) and

its alignment in the experimental chamber (b). (1) High-voltage electrode;

(2) experimental chamber; (3) ground electrode with cylindrical holder of

the wire array; (4) the direction of the incoming backlight laser beam; (5)

conically aligned wires of the array (yellow lines indicated by red arrows);

(6) brass electrodes holding the wires (orange parts indicated by orange

arrows).
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The discharge current I(t) and the voltage u(t) wave-

forms were measured using a self-integrated Rogowski coil

and a Tektronix P6015A high-voltage probe, respectively.

These data were acquired by a Tektronix TDS2024

4-channel digital oscilloscope, together with the synchroni-

zation output signal of the 4QuikE camera. In order to cal-

culate the energy deposited into the exploding wires, the

resistive voltage VR on the wire array was calculated by

subtracting the inductive component from the measured

voltage VR ¼ uðtÞ � L½dIðtÞ=dt�, where L is the array in-

ductance. The array inductance was obtained in experi-

ments with a short-circuit load, which was a cylindrical

metal slab with physical dimensions similar to those of

the wire array. Subsequently, the power was calculated

according to PðtÞ ¼ VRðtÞIðtÞ and the total energy deposited

into the wire array over the time of the discharge by

E ¼
Ð tF

t¼0
PðtÞdt, where tF is the time when the discharge cur-

rent is terminated (see Fig. 6 in Sec. III).

III. RESULTS

Typical waveforms of the discharge current and of the

voltage, together with the power and the energy deposited

into the exploding wires, are shown in Fig. 6. One can see

that the wire array explosion occurs at an amplitude of the

discharge current of �220 kA (current density in each wire

�68 MA/cm2). This explosion can be characterized as an

aperiodical discharge, since �70% of the stored energy is de-

posited into the exploding wire during �700 ns. The wire

array resistance at the maximum of the peak power of 9 GW

reaches �0.2 X (resistance of each wire reaches, respec-

tively, �8 X).

During the experiments, the snapshots of the generated

jets were captured by a 4QuikE camera with varying time

delays in the range of 6–22 ls with respect to the beginning

of the discharge current. It was observed that there are slight

variations in shape of the jets and SWs between different

experiments. Therefore, only the data from multiple-

exposure shots were analyzed, allowing us to disregard these

variations, as well as the time jitter of wire explosion. The

results of experiments where the apex angle of the array was

fixed at 2h¼ 7.16�, while the water layer thickness was var-

ied in the 1–6 mm range, and experiments where the water

layer thickness was not varied, while wire arrays with vary-

ing apex angles were exploded, are presented in Table II. A

set of experiments with a varying level of water covering the

array were performed in order to investigate the influence of

the thickness of the water layer that the jet penetrates before

it emerges into the air. The purpose of the series of the

experiments where only the apex angles were varied was to

examine the influence of the angle on the velocity of the

emerging jet and its shape.

The data obtained for these series are shown in Figs. 7

and 8. One can see that all the data points are linearly

aligned, which means that the velocities of both the jets and

the SWs propagating in air are constant. The fastest jet and

SW originate in the setup with the lowest water layer thick-

ness, namely, 1 mm, where the velocity of the jet reaches

1.25� 105 cm/s. This result can be qualitatively explained by

the smallest thickness of the water layer that the jet has to

penetrate. One can see the 2-exposure overlaid image

obtained in this particular experiment in Fig. 9. The jet’s

shape is almost perfectly conical, without a visible SW in

front of the jet. The jet seems to “slice through” its SW, and

the part of the SW in front of the jet is missing. This can be

explained by the high velocity of the jet, which is sufficiently

FIG. 4. Image of the transparent ruler used for the spatial calibration. The

ruler was placed just above the wire array.

FIG. 5. A single-exposure shadow image prior to (a) and after (b) the explo-

sion of a wire array with a reflector. (1) Fast jet; (2) SW in air; (3) water sur-

face before the experiment. Frame duration of 4QuikE camera is 5 ns.

FIG. 6. Typical current and resistive

voltage (a) during the explosion of

wire arrays, and the power and depos-

ited energy (b). The conical wire array

is constructed of 40 Cu-wires, each

0.1 mm and �40 mm in diameter and

length, respectively.
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fast to engulf its own SW. The TOF analysis, together with

the measurement of the dimensions of the jet in this image,

allows a rough estimate of the kinetic energy carried by this

jet, Ejet � 7 J.

In the experiments with 2 mm and 4 mm water layer

thicknesses and the same cone apex angle of 2h¼ 7.16�, the

velocities of the jets and the accompanying SWs decrease by

�2.3 times as compared with their values for the 1 mm water

layer thickness. At the greatest water layer thickness of

6 mm tested in this research, the jet is no longer observed

and only the SW is visible. One can suppose that in this con-

figuration the energy of the jet was just sufficient for it to

penetrate the water above the array, but not sufficient for it

to emerge above the water layer.

Fig. 8 shows that the velocities of both the jet and the

SW increase with the cone apex angle for the angle values

tested in this study. This result will be discussed in detail in

Sec. IV.

A typical multiple-exposure shot of a single experiment

is presented in Fig. 10. One can see the narrow column of

the jet, propagating upward. An SW preceding the jet is gen-

erated because of the jet’s supersonic movement in air. One

can see the Mach cone of the SW and the rest of the SW

swept aside from the jet. These data allow one to apply an

additional evaluation method of the jet velocity. Indeed, it is

well-known that an object propagating with supersonic ve-

locity V in a medium where the sound velocity is CS gener-

ates an SW with a Mach cone characterized by the angle

sin h ¼ CS=V.11 Thus, using the measured Mach cone angle

of h¼ 41.3� and the velocity of sound for air CS¼ 330 m/s,

one obtains a jet velocity of V � 0:5� 105cm=s, which is

consistent with the TOF measurements (see Table II).

TABLE II. Summary of experimental results.

Type of array Cone apex angle (deg) Depth of the water level (mm) Velocity of the jet (�105 cm/s) Velocity of the SW (�105 cm/s)

Conical 2h01¼ 7.16 1 1.25 1.21

Conical 2h01¼ 7.16 2 0.53 0.54

Conical 2h01¼ 7.16 4 0.55 0.59

Conical 2h01¼ 7.16 6 no jet 0.58

Conical 2h02¼ 13.54 4 0.76 0.75

Conical 2h03¼ 21.24 4 0.91 0.87

Cylindrical 2h¼ 0 2,4,6 no jet 0.4

FIG. 7. The measured TOF and distance of the jets (a) and of the shockwaves (b) from the surface of the water in the series where only the water layer thickness

was varied. The same wire array with apex angle of 2h¼ 7.16� was used. (1) 1 mm water layer, Vjet ¼ 1:25� 105 cm=s, VSW ¼ 1:21� 105 cm=s. (2) 2 mm water

layer, Vjet ¼ 0:53� 105 cm=s, VSW ¼ 0:54� 105 cm=s. (3) 4 mm water layer, Vjet ¼ 0:55� 105 cm=s, VSW ¼ 0:59� 105 cm=s. (4) 6 mm water layer,

VSW ¼ 0:54� 105 cm=s; no jet was observed.

FIG. 8. The measured TOF and distance of the jets (a) and of the shockwaves (b) from the surface of the water in the series where only the apex angle of the array

was varied. The water layer thickness was 4 mm. (1) 2h¼ 7.16�, Vjet ¼ 0:55� 105 cm=s, VSW ¼ 0:59 �105 cm=s. (2) 2h¼13.54�, Vjet¼0:76 �105 cm=s, VSW ¼
0:75 �105 cm=s. (3) 2h¼21.24�, Vjet¼0:91�105 cm=s, VSW ¼0:87�105 cm=s.
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IV. DISCUSSION

In this section, a steady-state model of water compres-

sion caused by the electrically exploding conical-shaped

plasma shell is discussed. The model considers a metallic

rigid cone, the length of the side of which is R0 ¼ l and half

of the apex angle is h0 (see Fig. 11). A conical wire array

with the same length and angle as the cone is placed inside

the cone in close proximity to the metal wall. In order to sim-

plify the calculation of the array explosion, it is assumed that

the explosion is characterized by a constant energy deposi-

tion rate, w, and that the energy deposited into the array is

equally distributed along the length of the wires. In addition,

it is supposed that a thin plasma cone with a width of d� l
is formed when the number of wires is N	 1. In the case of

a 40-wire conical array, with a base radius of 5 mm, consist-

ing of copper wires 0.1 mm in diameter, one obtains that, at

�2 ls with respect to the beginning of wires explosion, a

conical plasma shell should be formed because of the radial

expansion of the wires with a velocity of �105 cm/s.12

A spherical system of coordinates, with its center coin-

ciding with the apex of the cone, presenting a part of a

sphere and with the OZ axis lying along the symmetry axis

of the cone, is considered. An elementary volume of the

plasma shell, dV¼ (dS)d, absorbs the energy of Nw(dR/l)
from N exploding wires at any given instant. Here, dS¼ 2pR
sinhdR is the unit area of the cone. Thus, one obtains that

the energy density dW in the volume unit (i.e., the pres-

sure P) in the vicinity of the wall depends on the radius

as dW � Nw (dR/l)/(dS)d / 1/R. The model considers a

steady state process with an established pressure distribu-

tion and the flow of low-compressible water inside the

cone. The assumption of non-compressibility of water

means that the increase in the water density has been

neglected, i.e., the water flow has been considered in the

acoustic approximation. The system of Euler equations for

an incompressible fluid reads11

@~v

@t
þ ~v 
 ~rð Þ 
~v ¼ � ~r

P

q

� �
; ~r 
~v ¼ 0:

In the case of the azimuthal symmetry, Vr and Vh are the

only non-zero components of the water flow velocities. The

system of discontinuity and Euler equations for these non-

zero velocity components of the liquid, written with a dimen-

sionless coordinate r¼R/l, reads

FIG. 9. The two-exposure image of the jet originating from the explosion of

an array with an apex angle of 2h¼ 7.16� and water layer thickness of

1 mm. The frames were taken at t1¼ 14 ls and t2¼ 16 ls. One can see the

conical shape of the jet with no visible shock wave in front of it.

FIG. 10. Typical four-exposure image of the jet and SW in air. The apex

angle of the wire array is 2h¼ 7.16� with a water layer thickness of 4 mm.

Note the blunt “nose” of the emerging jet and the Gaussian-shaped shock

wave with the clearly visible Mach cone. Color marking code of snapshot

taken at t¼ 18 ls: orange—direction of the flight of the jet; green—direction

of the sideways expansion of the sound wave in air; yellow—marking of the

Mach cone with its angle.

FIG. 11. The coordinates of the theoretical model.
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1

r2

@ r2Vrð Þ
@r

þ 1

r sin hð Þ
@ Vh sin hð Þ

@h
¼ 0;

Vr
@Vr

@r
þ Vh

r

@Vr

@h
� V2

r

r
¼ � 1

q0

@P

@r
;

Vr
@Vh

@r
þ Vh

r

@Vh

@h
þ VrVh

r
¼ � 1

q0r

@P

@h
:

(1)

Here, P(r,h) is the pressure inside the water. Now, by using

dependence of pressure versus radius as P / 1/r, a self-

similar solution of Eqs. (1) can be searched as

Vr ¼ V0<ðhÞ=
ffiffi
r
p
;

Vh ¼ V0HðhÞ=
ffiffi
r
p
;

P ¼ q0V2
0PðhÞ=r:

(2)

Here, V0 is the typical velocity of the water jet, which

will be defined later. <(h), H(h), and P(h) are dimension-

less functions,13 which depend on the azimuthal angle h
only. These functions are the self-similar representatives

of water flow parameters Vr, Vh, and P, and they can be

found by solving Eq. (3), after substitution of expressions

(2) in Eq. (1)

dH
dh
¼ �3<=2�Hctg hð Þ;

dP
dh
¼ H < þHctgh½ �;

H
d<
dh
¼ PþH2 þ <2=2:

(3)

Equation (3) is a system of ordinary differential equations

(ODEs) with three unknown variables, H, P, and <, and

with boundary conditions determined by the symmetry of the

water flow. The solution of Eq. (3) allows the physical varia-

bles to be calculated by multiplying dimensionless functions

H, P, and < by their appropriate dimensional parameters

[see Eq. (2)]. The boundary conditions at the OZ axis (at

h¼ 0) require that the velocity component Vh¼ 0 and the de-

rivative of the pressure dP/dh¼ 0, and that at h¼ h0, Vh¼ 0.

By using Eq. (2), the water flux through some arbitrary part

of the spherical surface defined by r inside the cone can be

estimated as

JðrÞ ¼ 2pq0

ðh0

0

r2Vrðr; hÞ sin hdh

¼ 2pq0V0r3=2

ðh0

0

<ðhÞ sin hdh: (4)

In the case of a steady-state water flow, this flux should be

constant for any r. However, one sees that this flux depends

explicitly on r. This contradiction can be resolved by the

requirement that the integral in Eq. (4) be zero. This can be

satisfied only if the radial component of the water flow veloc-

ity, Vr, changes its sign (i.e., the direction of the water flow) at

some critical angle hcr. Thus, in addition to the boundary con-

ditions, one obtains the condition for a constant water flow

ðh0

0

<ðhÞ sin hdh ¼ 0: (5)

The boundary conditions at the vicinity of the OZ axis,

which are required for the solution of Eq. (3), are obtained

by analyzing the analytical solution of Eq. (3) in this region.

This solution can be obtained by making several approxima-

tions for the dimensionless functions. At h! 0, the value of

Vh, and accordingly of H(h), approaches zero, ctgh
approaches infinity, and the derivate of the pressure is almost

zero. Thus, at h ! 0, the following inequality between the

dimensionless functions exists:

< 	 P � 1	 H:

This inequality, together with the definition of the dimen-

sionless representative functions [see Eq. (2)], allows Eq. (3)

to be rewritten as

<þHctgh � 0;

dH=dh ¼ �<=2;

d<=dh ¼ <2=2H:

(6)

The solutions for HðhÞ and <ðhÞ reads

H ¼ C
ffiffiffiffiffiffiffiffiffiffi
sin h
p

< ¼ �C cos h=
ffiffiffiffiffiffiffiffiffiffi
sin h
p

: (7)

Here, C is the integration constant. These solutions allow us to

determine the boundary conditions for h1� 1�, which are nec-

essary for the numerical solution of Eq. (3). Let us note that Eq.

(3) does not change when P! C2P, <! C<, and H! CH.

This was used for the solution of Eq. (3). Namely, for a certain

value h1� 1�, the initial values of <ðh1Þ and H(h1) are calcu-

lated by using the analytic solutions (7) with the value of the

constant C¼ 1. For the same value h1, an arbitrary positive value

for P(h1) was chosen. For these boundary conditions, namely,

for the known values of <ðh1Þ, H(h1), and P(h1), the distribu-

tions of <ðhÞ, H(h), and P(h) were determined using the nu-

merical solution of Eq. (3). The next step was the calculation of

the integral (5) with the known distribution of <ðhÞ: In the case

where this integral is not zero, a new value of P(h1) was

selected and the procedure was repeated until condition (5) was

satisfied. The final iteration, i.e., when condition (5) was satis-

fied, showed that the representative of velocity H(h) approaches

almost zero at h¼ h0, which agrees with the condition of Vh¼ 0

at that location. In addition, let us note that the obtained distribu-

tion of the representative function of pressure P(h) was found to

be almost constant. Thus, the only significant pressure gradient

exists along r, i.e., in the vertical direction.

In the experiments, three wire arrays with apex angles

of h01 ¼ 3:58�; h02 ¼ 6:79�; h03 ¼ 10:62�, base radii of

r1 ¼ 5 mm; r2 ¼ 6 mm; r3 ¼ 10 mm, and side lengths of

ðli¼ri=sinhi;i¼1;2;3Þ l1�80mm; l2�51mm;l3�54mm,

respectively, were tested. For these arrays, the set of parame-

ters Pi, which were found to satisfy condition (5) are

P1�18:4778; P2�9:7116; and P3�6:1187, respectively.

The critical angles for these parameters, i.e., the angles at

which the direction of the water flow is reversed and for
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which the representatives of radial velocities <iðhcrÞ¼0,

are hcr1¼2:39�; hcr2¼4:56�; and hcr3¼7:41� , respectively.

These angles also determine the maximal radii of the cross

section of the ejected jets at the base of the array cone of

3:4mm;4:1mm;and7mm, respectively.

Finally, in order to obtain values Vr(r), Vh(h), and P(r,h)

for the determined distributions <ðhÞ, H(h), and P(h), one

has to determine the value of the typical velocity V0 of the

water flow [see expressions (2)]. The latter can be obtained

using the calculation of the net flux of the kinetic energy of

the water flow through the base of the array

W ¼ 2pqV3
0 l2Se: (8)

Here, Se ¼ 1
2

Ð h0

0
<ðhÞ½ �3 sinðhÞdh is computed by using the

obtained distribution of <ðhÞ. The non-zero value of Se is

related to the net outflowing kinetic energy flux of the water

jet. This energy flux W can be estimated using the measured

power PE � 9� 109W deposited into the wire array, multi-

plied by the efficiency of the conversion of the electrical

energy into the energy of the converging water flow

g � 0:1.12,14 The latter allows one to calculate the typical

velocity of the jets and the pressure near the cone aperture

for the three wire arrays tested. For the first array,

h01 ¼ 3:58�: V01 � 1218 m=s, P1 � 2:74� 1010 Pa; for the

second array, h02 ¼ 6:79�: V02 � 1441 m=s, P2 � 2:02

�1010Pa (this value of the velocity is near the upper value

for the valid velocities of this model, since in this model

V0 < CS � 1500 m=s); for the third array, h03 ¼ 10:62�:
V03 � 1268 m=s, P3 � 9:85� 109 Pa.

Now, let us compare the results of the experiment with

the calculation results in the framework of this model. The

velocity of the emerging jets under the assumption of the

“incompressibility” of the medium is Ui � V0i=2.15 This ve-

locity is acquired by the jet after it has penetrated a water

layer with a thickness of H > HC, where HC is some thick-

ness of water where a stationary penetrating jet is formed.

The experiment provides the measurement of the velocity of

the jets after they have penetrated water layers of varying

thickness H. Thus, in the case of H � HC, the value of the

jet velocity is close to its value near the aperture of the wire

array, and in case H > HC, the jet velocity is Ui � V0i=2. In

the cases where the thickness is intermediate, the values of

the velocity will be in the range of V0i=2 < Ui < V0i. For the

array with apex angle 2h01¼ 7.16� and H¼ 1 mm, the calcu-

lated velocity is 1250 m/s, close to the measured velocity of

V01 � 1218 m=s (see Table II). In the cases of H¼ 2 mm and

H¼ 4 mm, the experimentally measured velocities were

530 m=s and 550 m=s, respectively. These velocities are

within 10% of V01=2, which is also in good agreement with

the model.15 A similar satisfactory agreement was obtained

for the array with 2h02¼ 13.54� H¼ 4 mm, and a measured

jet velocity of �760 m/s. In this case, water flow velocity

calculated at the aperture of the array is V02 � 1441 m=s.

Finally, for the wire array with the largest apex aperture

angle, 2h03¼ 21.24� and H¼ 4 mm the measured velocity is

�910 m=s: The assumption of H > HC in this case results in

2U3 � 1820 m=s, which is substantially larger than the

sound speed in water, and the calculated velocity of

V03 � 1268 m=s. Therefore, one can conclude that H < HC

for this apex angle.

V. SUMMARY

The results of the experiments showed that underwater

electrical explosion of conical wire arrays can be success-

fully used to generate fast jets emerging from water, instead

of the commonly used explosives. It was shown that the ge-

ometry of conically shaped wire arrays and the thickness of

the water layer above the array determine the parameters of

the generated water jet emerging from the water. The experi-

mentally obtained velocities of jets were found to be in good

agreement with the developed model for the cumulative

flows in water, as well with the model of penetration of water

by a fast jet.15
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